摘要:研究了不同水膠比條件下,NaOH預處理方式和橡膠摻量對混凝土吸水性、毛細孔隙率、干燥收縮及力學性能的影響。結果表明,摻加經NaOH預處理的橡膠所配混凝土具有更低的吸水率、毛細孔隙率、脆性和更高的抗折強度,預處理對橡膠混凝土上述性能的改性作用與水膠比有關,水膠比較高時改性效果較好。
關鍵詞:橡膠混凝土;NaOH預處理;吸水性;脆性;水膠比
中圖分類號:TU528.41
文獻標志碼:A 文章編號:1674-4764(2016)02-0044-07
Abstract:The influence of water to binder ratio, rubber pretreated method and dosage to water absorption on the capillary porosity, drying shrinkage and mechanical properties of rubber concrete was studied. The results indicated that the NaOH pretreatment could help improve overall performances of rubber concrete, while its influence is dependent on water to binder ratio of concrete. It is suggested that the improvement of concrete by NaOH pretreatment was enhanced at a higher water to binder ratio.
Keywords:rubber concrete; NaOH pretreatment; sorptivity; toughness; water to binder ratio
將廢舊橡膠作為集料用于水泥混凝土中是一種有效利用廢舊橡膠的方式,也是降低混凝土脆性的新途徑。已有研究表明,橡膠混凝土在變形性能和增強韌性方面表現出積極的效果[1-4],但橡膠集料的摻入會降低混凝土的力學性能[5-7],這限制了它的應用。
為改善橡膠混凝土的力學性能,通常對橡膠集料進行預處理。常見的預處理方式包括水洗、偶聯劑處理、NaOH溶液處理以及乳膠處理[8-10]。預處理可以有效提高橡膠集料與水泥石之間的粘結強度。NaOH預處理能改善橡膠集料表面的親水性和混凝土中界面過渡區的性能,在提高混凝土強度[9-10]的同時,影響水分在混凝土中的遷移行為,進而影響混凝土的吸水性與干燥收縮。然而,已有的關于NaOH預處理對橡膠混凝土吸水性和收縮行為影響的研究沒有一致結論。目前,有關橡膠混凝土的脆性研究多數集中在橡膠混凝土彈性模量與橡膠摻量之間關系上[11-13]。橡膠混凝土彈性模量降低是橡膠混凝土強度降低效應與橡膠集料本身低彈模特性共同作用的結果,而目前關于兩種作用效應缺少細致研究。
筆者試驗研究了NaOH預處理方式、橡膠摻量、水膠比對混凝土吸水率、毛細孔隙率、干燥收縮以及力學性能的影響,比較了相同強度等級的橡膠混凝土和普通混凝土彈性模量之間的關系,以揭示預處理橡膠集料對混凝土脆性影響的規律。
1 實 驗
1.1 原材料與混凝土配合比
采用重慶小南海水泥廠生產的P?O 42.5R水泥,重慶珞璜電廠Ⅱ級粉煤灰,水泥和粉煤灰的主要化學成分見表1。
1.2 實驗方法
橡膠預處理:先將橡膠集料置于質量分數為5%的NaOH溶液浸泡24 h,然后用清水洗凈,再在45 ℃下烘至恒重后備用。
混凝土吸水測試:參考標準BS-EN13057,實驗裝置見圖1。成型100 mm×100 mm×100 mm的立方體試件,1 d后拆模,在標準條件下養護28 d后轉移至恒溫烘箱中,在45±2 ℃的溫度下干燥7 d。將干燥后的試件密封,置于20±2 ℃的環境中冷卻24 h,將試件測試端浸入水中(如圖1所示),液面不超過測試面5 mm,測量一定時間間隔的吸水量,精確至0.01 g。通過吸水量與時間關系計算混凝土吸水率。
混凝土毛細孔隙率實驗:按照以上裝置,將試件1/2(50 mm)浸水浸泡3 d,再將浸水高度提升至75 mm浸泡3 d,最后完全浸水4 d,以吸水體積表征混凝土毛細孔隙率[14]。
干燥收縮試驗:依據《普通混凝土長期性能和耐久性能試驗方法標準》(GB/T 50082―2009)規定進行測試。
混凝土抗壓強度、抗折強度和靜力受壓彈性模量測試:按照《普通混凝土力學性能試驗方法標準》(GB/T 50081―2012)規定進行測試。
2 結果與討論
2.1 NaOH預處理橡膠對混凝土吸水率和毛細孔
隙率的影響
混凝土吸水率和毛細孔隙率是評價混凝土耐久性的重要指標,圖2給出了不同水膠比下,橡膠預處理方式和摻量對混凝土吸水率的影響。從圖中可以看出,與未處理橡膠集料相比,摻NaOH預處理橡膠集料所配混凝土吸水率更低。摻入橡膠集料后,混凝土吸水率變化受橡膠摻量變化影響不大,但會受到水膠比的影響。當水膠比為0.4時,摻加未處理橡膠配制的混凝土吸水性與基準組相近,取代率為30%時,摻預處理橡膠的混凝土吸水率比摻入未處理橡膠集料時低19.8%,當水膠比為0.3時,降低幅度僅為3.2%。
圖3給出了橡膠預處理方式和摻量對混凝土毛細孔隙率的影響。由圖可以看出,當水膠比為0.3時,毛細孔率在3.5%~4.0%之間,NaOH預處理橡膠和橡膠摻量對混凝土毛細孔隙率影響不明顯;當水膠比為0.4時,摻入橡膠集料會降低混凝土毛細孔隙率,NaOH處理橡膠集料配制的混凝土毛細孔隙率更低,當橡膠集料的體積取代率從0增加到30%時,毛細孔隙率由6.6%減小至58%,降低了12.1%。當取代率為30%時,摻預處理橡膠的混凝土毛細孔隙率比摻入未處理橡膠集料時低9.5%。 3)在實際使用時,橡膠混凝土抗壓強度與彈性模量之間的關系不符合當前《混凝土結構設計規范》(GB 50010―2010)中規定的抗壓強度和彈性模量的關系。當橡膠摻量高于一個臨界摻量時,橡膠混凝土的彈性模量將比普通混凝土的低,表現出更好的柔性。此臨界摻量受到水膠比的影響,水膠比較小,此臨界摻量較大。
參考文獻:
[1] KHALOO A R, DEHESTANI M, RAHMATABADI P. Mechanical properties of concrete containing a high volume tire-rubber particles [J]. Waste Management, 2008, 28(12): 2472-2482.
[2] GUO Y C, ZHANG J H, CHEN G. Fracture behaviors of a new steel fiber reinforced recycled aggregate concrete with crumb rubber [J]. Construction and Building Materials, 2014, 28(53):32-39.
[3] NAJIM K B, HALL M R. Crumb rubber aggregate coatings/pre-treatments and their effects on interfacial bonding, air entrapment and fracture toughness in self-compacting rubberised concrete (SCRC) [J]. Materials and Structures, 2013, 12(46): 2029-2043.
[4] 王銘明,滿志剛,陳健云. 改善仿真混凝土塑性的兩種方法[J].建筑材料學報,2013, 16(5): 794-800.
WANG M M, MAN Z G, CHEN J Y. Experimental research on tow methods to improve plasticity of emulation concrete [J]. Journal of Building Materials, 2013, 16(5): 794-800. (in Chinese)
[5] ELDIN N N, SENOUCI A B. Rubber-tired particles as concrete aggregate [J]. Journal of Materials in Civil Engineering, 1993, 5(4): 478-496.
[6] 馬一平,劉曉勇,譚至明,等. 改性橡膠混凝土物理力學性能[J]. 建筑材料學報,2009,12(4): 379-383.
MA Y P, LIU X Y, TAN Z M, et al. Research on physical and mechanical properties of cement concrete mixed with modified rubber particles [J]. Journal of Building Materials, 2009,12(4): 379-383. (in Chinese)
[7] 劉日鑫,侯文順,徐永紅,等.廢橡膠顆粒對混凝土力學性能的影響[J]. 建筑材料學報,2009,12(3):341-344.
LIU R X, HOU W S, XU Y H, et al. Effect of crumb rubber on the mechanical properties of concrete [J]. Journal of Building Materials, 2009, 12(3): 341-344. (in Chinese)
[8] 鄭麗娟,余其俊,韋江雄,等. 廢橡膠粉的改性及其對水泥砂漿性能的影響[J]. 武漢理工大學學報,2008,30(1): 52-54.
ZHENG L J, YU Q J, WEI J X, et al. Surface modification of pulverized waste rubber and its effect on the properties of portland cement mortar[J]. Journal of Wuhan University of Technology, 2008, 30(1): 52-54. (in Chinese)
[9] SEGRE N, MONTEIRO P J, SPOSITO G. Surface characterization of recycled tire rubber to be used in cement paste matrix [J]. Journal of Colloid and Interface Science, 2002, 248(2): 521-523.
[10] SEGRE N, JOEKES I. Use of tire rubber particles as addition to cement paste [J]. Cement and Concrete Research, 2000,30(9):1421-1425.
[11] LI L J, RUAN S H, ZENG L. Mechanical properties and constitutive equations of concrete containing a low volume of tire rubber particles [J] Construction and Building Materials, 2014, 70(15):291-308. [12] NAITO C, STATES J, JACKSON C. Assessment of crumb rubber concrete for flexural structural members [J]. Journal of Materials in Civil Engineering, 2014, 26(10): 04014075-1-04014075-8
[13] 趙艷艷,賀東青,王一鳴. 橡膠混凝土的基本力學性能[J].河南大學學報,2015,45(1): 117-121.
ZHAO Y Y, HE D Q, WANG Y M. Experimental study on basic mechanical properties of rubberized concrete [J]. Journal of Henan University, 2015,45(1): 117-121. (in Chinese)
[14] VAN DEN HEEDE P, GRUYAERT E, De Belie N. Transport properties of high-volume fly ash concrete: Capillary water sorption under vacuum and permeability[J]. Cement and Concrete Composites, 2010,32(10):749-756.
[15] YU L G, YU Q J, LIU L. Hybrid modified rubber powder and its application in cement mortar [J] Journal of Wuhan University of Technology: Materials Science Edition, 2010, 25(6): 1033-1037.
[16] LING T C, NOR H M, HAININ M R. Properties of crumb rubber concrete paving blockswith SBR latex [J]. Road Materials and Pavement Design, 2009, 10(1):213-222.
[17] TOPCU I B, AVCULAR N. Analysis of rubberized concrete as a composite material [J]. Cement and Concrete Research, 1997, 27(8):1135-1139.
[18] KHALOO A R, DEHESTANI M, Rahmatabadi P. Mechanical properties of concrete containing a high volume tire-rubber particles[J]. Waste Management, 2008,28(12):2472-2482.
[19] GANJIAN E, KHORAMI M, MAGHSOUDI A A. Scrap-tyre-rubber replacement for aggregate and filler in concrete [J] Construction and Building Materials, 2009, 23(5): 1828-1836.
[20] TURATSINZE A, GARROS M. On the modulus of elasticity and strain capacity of Self-Compacting Concrete inorporating rubber aggregates[J].Resources,Conservation and Recycling,2008, 52 (12):1209-1215.
[21] 混凝土結構設計規范: GB 50010―2010[S]. 北京:中國建筑工業出版社,2010.
Code for design of concrete structures:GB 50010―2010[S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
(編輯 胡英奎)