本文以駐馬店市某皮革廢水治污中心運行工況為例。在歷時 7 個月的跟蹤調研中可以看出,由于含鉻廢水中懸浮物濃度值較高,若僅采用加堿沉淀工藝難以使廢水中總鉻濃度滿足國標中不大于 1.5mg/L 的排放標準限值,而綜合廢水經過格柵、預沉、加藥絮凝等一級處理后,水質有了較大改善,各項污染物濃度相對穩定。再經二級生化處理后,水質中除 CODCr濃度僅能滿足國標中間接排放標準限值外,其它污染物濃度均能滿足直接排放標準限值。因此,探索出高效、穩定、運行費用低的制革廢水處理工藝已經成為皮革行業亟待解決的問題。
首先,本文針對含鉻廢水分別采用加堿沉淀工藝、加堿-絮凝劑聯用工藝、先加堿沉淀后使用絮凝劑助沉工藝、先加堿沉淀后砂濾罐過濾工藝四種方法處理。從實驗結果可以看出,后三種工藝均可以使廢水中總鉻含量降低至國標中排放標準限值之下,但加堿-絮凝劑聯用工藝運行費用最高,其次為先加堿沉淀后使用絮凝劑助沉工藝,而先加堿沉淀后砂濾罐過濾工藝運行費用最低,適合處理含鉻廢水水量大,需要長期運行的皮革廢水處理企業。
針對皮革廢水二級生化出水,本文首先采用填料法處理工藝,結果表明填料對CODCr的去除效果不太理想,去除率僅維持在 12%~13%之間,未使 CODCr濃度降低至國標中直接排放標準限制之下。其次,研究采用臭氧氧化、次氯酸鈉氧化、Fenton 氧化三種高級氧化工藝處理,結果表明三種工藝對水質色度的去除率均在 90%以上;僅次氯酸鈉氧化工藝對氨氮的去除效果最佳,去除率接近 100%;臭氧氧化和次氯酸鈉氧化這兩種工藝對 CODCr的去除效果較差,但在初始 pH 值為 4,H2O2投加量為 600mg/L,Fe2+投加量為 400mg/L,反應時間為 50min 的條件下,采用 Fenton 氧化工藝 CODCr的去除率可以達到 50%以上,CODCr的濃度值可以滿足國標中連續排放限值要求。同時,設計單因素實驗驗證,在 Fenton 氧化工藝中,采用 PVC 穿孔曝氣管進行曝氣攪拌和在反應終止時將 pH 值調節到 8 以終止反應兩種方式,對 Fenton 氧化工藝效果不會產生影響。
采用這兩種方式不僅可以減少設備資金投入和維修成本,也可減少藥品的投加量,降低企業的運行費用。
最后,以焦作某皮革公司廢水治理項目為例,通過實際運行結果可以看出,含鉻廢水經加堿沉淀后上清液再通過砂濾罐工序處理,出水總鉻濃度可以滿足國標的排放標準;綜合廢水經過先物化后生化,最終由 Fenton 工藝氧化后出水水質穩定,色度倍數僅有 2倍,同時 CODCr及氨氮濃度值遠低于國標中直接排放濃度限值。
綜上所述,采用上述兩種改進工藝對皮革廢水處理后,出水水質更加穩定,故非常適合長期運行。
關鍵詞:皮革廢水;砂濾罐;填料;高級氧化
Abstract
The operating state of a tannery wastewater treatment center in Zhumadian was taken asan example in this paper. From the seven months tracking research, it can be seen that if thealkali precipitation process was used only, it was difficult to make the total chromium contentto meet the national standard, which requires the emission of chromium cannot more than1.5mg/L, for the concentration of suspended matter in chromium-containing wastewater had ahigh value. It can be seen that water quality had greatly improved and the pollutantconcentration maintained stable after the integrated wastewater went through the firsthandling processes, such as grille, primary sedimentation, and flocculation. After the waterwent through the second biochemistry handling process, besides CODCr, the concentration ofother pollutants in the water could meet the direct emission standard limits. In this situation,the concentration of CODCrcould only meet indirect emission standard limit of the nationalstandard. Therefore, it is urgency of finding a efficient, stable, low operating costs tannerywastewater treatment process for leather industry.
Firstly, alkali sedimentation process, alkali - flocculent combined process, alkaliprecipitation followed coagulant aids precipitation co-precipitation process and alkaliprecipitated followed sand filtration tank filter process were used to handle thechromium-containing wastewater. As can be seen from the experimental results, the last threeprocesses could reduce the total chromium content in wastewater to emission standard limit.
But at the same time, the cost of alkali - flocculent combined process was the highest. Thealkali precipitation followed coagulant aids precipitation co-precipitation process followed.
And alkali precipitated followed sand filtration tank filter process was the last. So the alkaliprecipitated followed sand filtration tank filter process was suitable to treat the large amountchromium- containing wastewater and for the enterprises which needed long-term treatmentof leather wastewater.
For secondary biochemical leather wastewater, filler treatment process was used at first.
The results showed that removal effect of the filler to the CODCrwas not good. And theremoval efficiency was between 12% and 13%. The concentration of CODCrwas still largerthan the direct emission standard limit of the national standard. Secondly, ozone oxidation,sodium hypochlorite oxidation and Fenton oxidation were used. The results showed thatremoval effects of these three kinds of processes on the water chromaticity were lager than90%. The removal effects on ammonia nitrogen were the best when the sodium chlorateoxidation process was used. And the removal efficiency of ammonia nitrogen could reach100%. Ozone oxidation process and sodium chlorate oxidation process had little effect on theconcentration of CODCr. When the value of pH was 4, the addition amount of H2O2was600mg/L, the addition amount of Fe2+was 400mg/L, and the reaction time was 50min, theremoval efficiency of CODCrby Fenton oxidation process was larger than 50%. Theconcentration of CODCrcould meet the direct emission standard limit of the national standard.
At the same time, single factor experiment was designed during Fenton oxidation process.
Two measures were tried. One was aeration stirring used PVC perforated aeration tube. Theother was to adjust the value of pH to 8 when the reaction was terminated. Using these twomeasures could not only reduce the capital investment of equipment and the costs ofmaintenance, but also reduce the dosage of drugs and the operating cost.
Finally, the wastewater treatment project of a leather industry in Jiaozuo was taken asanother example in this paper. It could be seen from the actual operating result that after thewastewater was treated by the alkali precipitated followed sand filtration tank filter process.
The effluent concentration of total chromium could meet the direct emission standard limit.
After the integrated wastewater went through physicochemical treatment at first, thenbiochemical treatment, finally Fenton oxidation process, the quality of resulting water wasstable. The value of color multiple was just 2. And the concentration of CODCrand ammonianitrogen far bellowed the direct emission standard limits.
To sum up, after the two improved leather wastewater treatment processes were used,thequality of resulting water was more stable. So the improved processes were suitable forlong-term operation.
Key words: Leather wastewater;Sand filtration tank;Filler;Advanced oxidation process
目 錄
摘 要
Abstract
目 錄
第一章 緒論
1.1 研究背景
1.2 皮革廢水的來源及水質特性
1.2.1 皮革廢水來源
1.2.2 皮革廢水的水質特性
1.3 皮革廢水處理技術國內外研究現狀
1.3.1 含鉻廢水處理
1.3.2 含硫廢水預處理
1.3.3 綜合廢水處理
1.4 課題研究的內容
1.4.1 本課題的提出
1.4.2 課題研究內容
1.4.3 課題研究意義
第二章 駐馬店市某皮革廢水治污中心運行工況的調研
2.1 治污中心簡介
2.2 水污染物排放標準
2.3 治污中心運行監測
2.3.1 實驗試劑
2.3.2 實驗儀器
2.3.3 檢測方法
2.3.4 治污中心各單元運行工況
2.4 本章小結
第三章 含鉻廢水工藝研究
3.1 實驗材料及檢測方法
3.1.1 實驗用水
3.1.2 實驗試劑
3.1.3 實驗儀器
3.1.4 檢測方法
3.2 實驗方法及結果分析
3.2.1 加堿沉淀工藝
3.2.2 加堿-聚合氯化鋁聯用工藝
3.2.3 加堿-硫酸亞鐵聯用工藝
3.2.4 加堿沉淀后聚合氯化鋁絮凝助沉工藝
3.2.5 加堿沉淀后硫酸亞鐵絮凝助沉工藝
3.2.6 加堿沉淀后砂濾罐(上進水式)過濾工藝
3.2.7 加堿沉淀后砂濾罐(下進水式)過濾工藝
3.3 藥劑成本分析
3.4 本章小結
第四章 填料法處理皮革廢水二級生化出水的研究
4.1 實驗材料及檢測方法
4.1.1 實驗用水
4.1.2 實驗填料
4.1.3 實驗試劑
4.1.4 實驗儀器
4.1.5 檢測方法
4.2 實驗方法及結果分析
4.2.1 實驗方法
4.2.2 實驗結果
4.3 本章小結
第五章 高級氧化法處理皮革廢水二級生化出水的研究
5.1 實驗材料及檢測方法
5.1.1 實驗用水
5.1.2 實驗試劑
5.1.3 實驗儀器
5.1.4 檢測方法
5.2 實驗方法及結果分析
5.2.1 臭氧氧化皮革廢水二級生化出水
5.2.2 次氯酸鈉氧化皮革廢水二級生化出水
5.2.3 Fenton 氧化皮革廢水二級生化出水
5.3 本章小結
第六章 焦作某皮革公司廢水治理中心運行工況
6.1 項目介紹
6.2 污水處理中心各單元運行工況
6.2.1 實驗試劑
6.2.2 實驗儀器
6.2.3 檢測方法
6.2.4 各單元運行工況
6.3 工藝創新性
6.4 本章小結
總 結
參考文獻
致 謝