近年來,隨著紡織、印刷等印染工業的快速發展,染料污染問題日趨嚴重,因此,開展印染廢水治理工作尤為迫切。吸附法具有處理效果好、操作簡便、適用范圍廣等特點,從而被廣泛應用到污染物分離過程中。硅膠是常用的吸附材料,在污染物處理方面具有一定的應用價值。然而,目前我國工業化生產的硅膠粒徑大且分散不均勻,對有機污染物的吸附性能不理想,限制了硅膠作為吸附劑在污染治理方面的應用。果膠是一類廣泛存在于植物中的以 α-1,4-糖苷鍵鏈接的 D-半乳糖醛酸酸性雜多糖,分子內含有大量的羧基、羥基等活性基團,較多研究將果膠應用于吸附水中重金屬等污染物,鮮有研究將果膠應用于堿性陽離子染料的吸附。
本文制備了一種新型果膠改性硅膠復合材料,研究了果膠改性硅膠復合材料對堿性陽離子染料的吸附性能。果膠改性硅膠,既利用果膠分子與陽離子作用的活性位點,又提高了果膠的機械穩定性及作用面積,同時改進硅膠的吸附性能。實驗從廢棄的柚子皮中提取果膠,利用果膠對自制多孔硅膠微球進行表面改性,得到一種新型的復合材料--P-硅膠,研究了材料的制備條件及吸附性能的影響因素,并將其應用到水中亞甲基藍堿性染料的吸附分離中。主要內容包括:
(1)采用化學沉淀法,以硅酸鈉和氯化銨為原料,在添加表面活性劑的情況下,制備多孔硅膠微球,通過傅立葉紅外光譜和正置熒光顯微鏡對材料進行表征,研究了硅酸鈉濃度、表面活性劑種類、表面活性劑濃度、分散劑無水乙醇用量等因素對所制備的多孔硅膠微球吸附性能的影響。研究表明,當氯化銨濃度 1.0 mol/L,硅酸鈉濃度 0.5mol/L,表面活性劑十六烷基三甲基溴化銨(CTAB)濃度 0.1 mol/L,分散劑無水乙醇用量 5%時,制備出的多孔硅膠微球對亞甲基藍的去除率最好,最大去除率可達 51%.
(2)以廢棄的柚子皮為原料,采用酸提取法提取果膠,通過正交實驗確定了果膠的最佳提取條件為:提取溫度 95 °C,pH 值 1.5,料液比 1:15,提取時間 60 min,果膠提取率可達 5%以上。通過酸堿滴定法測得所提取的果膠的酯化度(DE)為 67.1% ,并且通過傅立葉紅外光譜對其結構進行表征。
(3)用果膠改性多孔硅膠微球表面,制備出果膠改性硅膠復合材料P-硅膠,通過傅立葉紅外光譜對 P-硅膠進行表征,并利用紫外分光光度法研究了 P-硅膠對亞甲基藍的吸附性能??疾炝嗽贤都恿繉λ苽涞腜-硅膠吸附性能的影響并比較了以自制硅膠和商品薄層硅膠HG為原料所制備的 P-硅膠的吸附性能。結果表明,硅膠經過果膠改性后,其對亞甲基藍的吸附容量由 30.35 mg·g-1增加到 41.33 mg·g-1,吸附性能明顯提高。當果膠與硅膠質量比為 1:2 時,制備的 P-硅膠對亞甲基藍的吸附性能較好,以自制硅膠為原料制備的 P-硅膠的吸附性能優于以硅膠 HG 為原料制備的 P-硅膠。
(4)研究了 P-硅膠吸附亞甲基藍的最佳吸附條件,考察了 pH值、吸附劑 P-硅膠用量、吸附時間、溫度、亞甲基藍的初始質量濃度等因素對 P-硅膠吸附性能的影響??疾炝瞬煌疵搫ㄈルx子水、無水乙醇、鹽酸)對 P-硅膠重復利用的影響。P-硅膠對亞甲基藍的吸附容量隨著 pH、溫度的升高而增大,堿性條件下有利于 P-硅膠對亞甲基藍的吸附,結果顯示:當 pH=7,P-硅膠用量為 5 mg,亞甲基藍初始質量濃度為 12 mg·L-1, 吸附時間 120 min,吸附溫度為 50 °C 時,制備出的 P-硅膠對亞甲基藍染料溶液的吸附容量最大可達 57.75mg·g-1.動力學研究表明 P-硅膠對亞甲基藍的吸附行為符合準二級動力學方程,P-硅膠吸附亞甲基藍的過程以化學吸附為主。吸附等溫線研究顯示,實驗數據擬合更符合 Langmuir 吸附等溫模型。以乙醇洗脫再生的 P-硅膠,重復使用效果較好。研究了 P-硅膠對湖水及自來水等實際水樣中亞甲基藍的去除效果,去除率可達 90%以上。
關鍵詞:果膠;改性;硅膠微球;亞甲基藍;吸附
ABSTRACT
For the last few years, with the rapid development of dyeing and printing industry, thepollution from dyestuff is getting worse. As a consequence, it is sorely needed controlling thepollution from dyestuff. As is known to all, adsorption method has benificial advantages, such as,effective treatment, ease of operation, wide applicability, which was applied in the process ofpollutants separation Silica gel is a kind of typical adsorption materials and shows the hugepotential practical value in the aspect of pollutant treatment.However, owing to the larger particlessize and uneven distribution, silica gel that was utilized in the controlling the pollution fromdyestuff widely was restricted. Pectin is a family of complex heteropolysaccharides consisting ofα-1,4-glycosidic linked D-galacturonic acid residues, which widely exists in plants and containslarge amount of active groups such as carboxyl, hydroxyl. The pectin is usually used to adsorb theheavy metal pollutants in the water mostly. However, there is little research about application ofpectin into alkaline cationic dyes adsorption.
In this paper, a new kind of composite materials was prepared by modifying porous silica gelwith pectin, and the alkaline cationic dyes adsorption property of composite materials was studied.
The adsorption property of Silica gel was increased through modified by pectin,which used themolecule interact between active group in the pectin and silicon hydroxyl in the silica gel andincresed the action area of pectin and enhanced the mechanical stability of pectin.The new kind ofadsorption materials (P-Silica gel) was prepared by modifying porous silica gel with pectinextracted from the waste pomelo peel. The preparation conditions of materials and the influencefactors of adsorption property was investigated.The P-Silica gel was applied in the adsorptionseparation of methylene blue in the watrer.The main content of this paper is as follows:
(1) The porous silica gel was obtained from ammonium chloride and sodium silicate byadding the surfactant. The materials were characterized by Fourier transform infrared (FT-IR)spectroscopy and fluorescence microscope. The effects of the Na2SiO3concentration, differentkinds of surfactant, the concentration of surfactant, the amount of disperser ethyl alcohol on theadsorption properties of the porous silica gel were examined.The study showed the best conditionas follows:the concentration of NH4Cl was 1 mol/L, the concentration of Na2SiO3was 0.5 mol/L,concentration of CTAB was 0.1 mol/L, the amount of ethyl alcohol was 5%. The porous silica gelprepared in this condition showed the largest removal rate of MB and the best removal rate mayreach 51%.
(2) The pectin was extracted from the waste pomelo peel by acid hydrolysis. According to theorthogonal experiment, the optimum extraction conditions were ascertained: extractiontemperature 95 °C, extraction pH 1.5,solid-liquid ratio 1:15, extraction time 60 min. In thiscondition, the extraction ratio of pectin was more than 5%. The degree of esterification to theextracted pectin was 67.1% measured by acid-base titration and the structure of pectin wascharacterized by Fourier transform infrared (FT-IR) spectroscopy.
(3) The composite materials (P-Silica gel) was prepared by modifying porous silica gel withpectin.The materials were characterized by Fourier transform infrared (FT-IR) spectroscopy. Itsapplication to Methylene Blue (MB) removal from wastewater was investigated by UVspectrophotometry. The adsorption property of P-Silica gel prepared by self-made silica gel andpurchased silica gel HG was compared. The result showed that the adsorption property of poroussilica gel was improved significantly after modified by pectin in the condition of the pectin withsilica gel mass ratio of 1:2, and its adsorption capacity increased from 30.35 mg·g-1to 41.33mg·g-1. The adsorption property of P-Silica gel prepared by self-made silica gel was better thanpurchased silica gel HG.
(4) The effects of the pH, the amount of P-Silica gel, the adsorption time, the temperature, theinitial concentration of MB on the adsorption properties of P-Silica gel were examined. And therecyle of P-Silica gel was investigated through eluted by Deionized water, ethanol, hydrochloricacid. With the increase of the solution pH and temperature, the adsorption capacity of P -Silica geladsorbing methylene blue was increased, and it was conducive for the adsorption of methyleneblue in the alkaline conditions. The optimized adsorption condition was as follows: pH=7, theamount of P-Silica gel was 5 mg, the initial concentration of Methylene Blue was 12 mg·L-1. Andthe maximum adsorption capacity of P-Silica gel to Methylene Blue was 57.75 mg·g-1at 50 ?C.
Kinetic studies showed that the adsorption kinetics illustrated the suitability of employing thepseudo-second-order kinetic model, which indicated that the process of P-silica gel adsorbingmethylene blue was given priority to chemical adsorption. Adsorption isotherms showed thatLangmuir model was more suitable for the experimental data fitting.The P-Silica gel eluted byethanol showed the best effect of recyle using. The removal rates of MB were more than 90 % inthe lake water samples and tap water samples with using P-Silica gel as adsorbent.
KEY WORDS:pectin; modify; silica gel; methylene blue; adsorption
目 錄
摘 要
ABSTRACT
目 錄
第一章 緒論
1.1 引言
1.2 染料廢水的主要治理方法
1.2.1 生物法
1.2.2 光催化法
1.2.3 膜分離法
1.2.4 吸附法
1.3 硅膠
1.3.1 硅膠微球的制備
1.3.2 硅膠微球的改性
1.4 果膠
1.4.1 果膠的結構
1.4.2 果膠的來源
1.4.3 果膠的性質
1.4.4 果膠的提取方法
1.4.5 果膠去除重金屬離子國內外研究現狀
1.5 論文的研究背景和主要內容
第二章 多孔硅膠微球的制備
2.1 前言
2.2 實驗部分
2.2.1 試劑和儀器
2.2.2 實驗原理
2.2.3 多孔硅膠微球的制備
2.2.4 多孔硅膠微球的表征
2.2.5 多孔硅膠微球的吸附性能
2.3 結果與討論
2.3.1 多孔硅膠微球的表征
2.3.2 實驗影響因素分析
2.4 本章小結
第三章 果膠的提取
3.1 前言
3.1.1 酸提取法
3.1.2 微波提取法
3.1.3 離子交換法
3.1.4 酶提取法
3.1.5 果膠沉淀方法
3.2 實驗部分
3.2.1 試劑和儀器
3.2.2 果膠的提取
3.2.3 果膠提取步驟
3.2.4 果膠提取正交實驗
3.2.5 果膠提取率計算
3.2.6 果膠酯化度的測定
3.2.7 果膠紅外分析
3.3 結果與討論
3.3.1 果膠提取正交實驗
3.3.2 果膠酯化度的測定
3.3.3 果膠的紅外光譜分析
3.4 本章小結
第四章 果膠改性硅膠的制備及其對亞甲基藍的吸附性能
4.1 前言
4.2 實驗部分
4.2.1 試劑和儀器
4.2.2 果膠改性硅膠的制備
4.2.3 樣品的紅外表征
4.2.4 亞甲基藍吸附實驗
4.3 結果與討論
4.3.1 樣品的紅外表征
4.3.2 制備條件對 P-硅膠吸附性能的影響
4.3.3 實驗條件對 P-硅膠吸附性能影響
4.4 本章小結
第五章 結論與展望
5.1 結論
5.2 展望
參考文獻
致 謝