因生物制藥廢水中殘留有對微生物有較強抑制性作用的抗生素,使得難以直接對其進行生化處理,因而需要先對該種廢水進行有效的預處理,來破壞或降解其中的殘留藥物分子及活性,提高廢水的可生化性,以利于廢水的后續生化處理。本研究以高濃度潔霉素實際生產廢水為研究對象,針對其具體特點,結合工程的應用性,作者提出了水解酸化預處理的方法。觀察水解酸化預處理該廢水的可行性以及不同因素對廢水水解酸化處理的效果,并且有針對性的投加經濟無害的材料來強化水解酸化對該廢水的處理效果,同時,研究并分析了預處理后不同的生化處理階段的效果,以期為實際工程應用提供一定的理論和實際指導。
水解酸化可以對高濃度潔霉素生產廢水進行預處理。試驗控制了反應器 pH為 6、7.5 和 9 這三種情況。結果顯示,在穩定運行時期,結合實際工程應用,控制 pH=7.5 時,潔霉素廢水水解酸化的效果最好,pH=9 次之,pH=6 最差。在最佳 pH(7.5)條件下,COD 的平均去除率為 11.50%,最高為 11.65%;出水揮發酸和酸化率分別穩定在 148.3~152.8mmol/L、10.74~12.60%之間;ORP 穩定為-200mV;B/C 從 0.34 升到 0.60.pH=7.5 和 9 的條件下水解酸化后續生化處理階段的 COD 去除效果均明顯優于 pH=6,但是,由于 pH=9 的水解酸化出水進后續生化處理時需進行 pH 調節的量大,藥劑消耗量增大,費用增高,故綜合考慮,選擇最佳的 pH 值為 7.5;且潔霉素廢水經過水解酸化預處理后的最佳方法為厭氧+好氧階段, COD 總去除率為 83.63%.研究了不同進水 COD 濃度及反應時間對水解酸化 COD 去除效果的影響。
結果顯示,在最佳 pH(7.5)條件下,反應器運行初期隨著進水 COD 濃度的增大(17000~20748.8~24681.2mg/L),COD 去除率呈先上升后下降的趨勢(13.0~33.6~29.3%),但因制藥廢水毒性的積累,以及高濃度的運行(23000mg/L以上),COD 去除率下降,當反應器內微生物與有毒物質的積累達到平衡狀態時,COD 去除率穩定為 11%.隨著反應時間的增加,COD 的去除率在反應的前 4h內因吸附作用,迅速增大,之后增加緩慢,當反應時間為24h時到達最大值14.9%,因此,最佳反應時間為 24h 時。
零價鐵(ZVI)和生物填料的投加均能強化高濃度潔霉素廢水水解酸化的處理效果。試驗在三個平行的反應器中進行:投加零價鐵的反應器(R1)、投加生物填料的反應器(R2)以及普通反應器(R0)。結果顯示,ZVI 和生物填料的分別投加,既能提高反應器抗水質沖擊負荷的能力,又能明顯提高水解酸化反應器的處理效果。在穩定運行時期,R1 和 R2 的 COD 去除率、酸化率和出水 B/C均明顯高于 R0,ORP 均低于 R0;R1 和 R2 的出水 B/C 提高比分別為 68.38%和57.83%,均明顯高于 R0 的 48.38%.反應器 R1 和 R2 的出水后續生化階段的 COD去除效果均明顯優于 R0.且潔霉素廢水經過水解酸化預處理后的最佳處理階段為厭氧+好氧,COD 總去除率為:R1,98.69%;R2,93.37%.零價鐵和生物填料分別對水解酸化的強化作用,提高了廢水的可生化性,為后續的生化處理提供良好的條件,并使后續處理效果得到明顯提高。
關鍵詞:潔霉素生產廢水;水解酸化;零價鐵;生物填料
Abstract
Because of residual antibiotics in the biopharmaceutical wastewater have stronginhibitory effect on microorganisms, making it difficult to directly on the biochemicaltreatment, therefore, it is essential to take effective pretreatment to damage ordegradation of residual drug molecules and antibiotic activity for this wastewater, andimprove the wastewater biodegradability, which favored the followed biochemicaltreatment. In this study, taking lincomycin production wastewater as the researchobject, in view of its specific characteristics and the engineering application, thepretreatment method of hydrolysis acidification was raised by the author. Observe thefeasibility of hydrolytic acidification pretreatment of lincomycin wastewater and theeffect of different factors on the wastewater hydrolytic acidification treatment, andtargeted economic harmless material to strengthen the effect of hydrolysisacidification of the waste water treatment, at the same time, the effect of differentbiochemical treatment after pretreatment are studied, in order to provide certaintheory for the practical engineering application and practical guidance.
Hydrolytic acidification can be pretreatment of high-concentration lincomycinproduction wastewater. The experiment control reactor pH of 6, 7.5 and 9. Resultsshow that the stable operation period, combined with the actual engineeringapplication, the best removal efficiency of lincomycin wastewater hydrolyticacidification can be obtained when pH = 7.5, pH = 9 times, pH = 6 is the worst. Theaverage COD removal rate is 11.5%, and the highest is 11.65%, under the conditionof optimum pH(pH=7.5)。 The volatile acid(VFA) concentration of effluent and theacidification degree(AD) respectively stable tendency in 148.3~148.3 mmol/L and148.3~12.6%, ORP stability around -200 mV, the B/C of the wastewater increasedfrom 0.34 to 0.6. The COD removal efficiency of the subsequent biochemicaltreatment after hydrolysis acidification under the conditions of pH = 7.5 and 9 isbetter than pH = 6. However, because the quantity of adjusting pH is big when theeffluent of pH = 9 hydrolytic acidification into the subsequent biochemical treatment.
And the reagent consumption increases, higher cost, so comprehensive consideration,selecting the best pH = 7.5 in engineering application. And the best biochemicaltreatment process after hydrolysis acidification pretreatment for the lincomycinwastewater is anaerobic + aerobic stage, The total removal rate of COD is 83.63%.
The COD removal efficiency of different influent COD concentration andreaction time on the hydrolysis acidification are studied. Results show that under thecondition of optimum pH(7.5), early reactor operation, with the increase of influentCOD concentration increase(17000~20748.8~24681.2mg/L), COD removal rateshow a trend of falling after rising first (13~33.6~29.3%)。 But because of theaccumulation of pharmaceutical wastewater toxicity, as well as the operation of thehigh concentration(23000mg/L above), COD removal rate decreased. Eventually theCOD removal rate steady at around 11% when the microbes is balanced with theaccumulation of toxic material in the reactor. With the increase of reaction time,because of the early adsorption effect, the COD removal rate increased rapidly in thereaction of the first 4 h, then increase slowly. The maximum COD removal rate is14.9% when the hydraulic reaction time is 24 h. Therefore, optimal reaction time is24 h.
Zero-valent iron (ZVI) and biological fillers were added to strengthen the resultof hydrolysis acidification of lincomycin wastewater treatment. The experiments arecarried out in three reactors parallel in parallel: adding the zero-valent iron in thereactor (R1), adding the filler of bioreactors (R2), and a ordinary reactor (R0)。
According to the results of ZVI and biological fillers were added, which can improvethe ability of the reactor anti water shock loading, and can significantly improve theprocessing effect of hydrolysis acidification reactor. During the period of stableoperation, the COD removal rate, AD and the B/C of effluent of the reactor R1 andR2 are significantly higher than that of R0, ORP below R0. The B/C increase rate ofR1 and R2 effluent is 68.38% and 57.83%, respectively, were significantly higherthan that of R0 (48.38%)。 The COD removal efficiency of the subsequentbiochemical treatment after R1 and R2 stage are better than that of R0. And the bestbiochemical treatment process after hydrolysis acidification pretreatment for thelincomycin wastewater is anaerobic + aerobic stage, The total removal rate of COD is:
R1, 98.69%; R2, 93.37%. Therefore, the ZVI and biological packing enhancedhydrolysis acidification, respectively, improved the wastewater biodegradability, toprovide good conditions for the subsequent biochemical treatment, and improve thesubsequent processing effect obviously.
Key words: lincomycin production wastewater; hydrolysis acidification;zero-valent iron; biological packing
目錄
摘要
Abstract
1 緒 論
1.1 生物制藥廢水概述
1.1.1 生物制藥生產工藝及廢水來源
1.1.2 生物制藥廢水水質特點
1.2 生物制藥廢水處理現狀
1.2.1 物理處理方法
1.2.2 化學處理方法
1.2.3 生化處理方法
1.3 水解酸化技術
1.3.1 水解酸化技術概述
1.3.2 水解酸化技術研究現狀
1.3.3 生物膜法在水解酸化中的應用
1.4 零價鐵(zero valent iron,ZVI)技術
1.4.1 零價鐵技術概述
1.4.2 零價鐵技術研究現狀
2 研究的目的、內容及技術路線
2.1 研究目的與意義
2.2 研究內容
2.3 技術路線
3 水解酸化預處理潔霉素廢水的試驗研究
3.1 試驗材料與方法
3.1.1 試驗廢水來源及水質
3.1.2 試驗裝置
3.1.3 分析項目、方法及儀器設備
3.1.4 試驗方法
3.2 水解酸化污泥的培養與馴化結果及分析
3.2.1 水解酸化污泥培養結果及分析
3.2.2 水解酸化污泥馴化結果及分析
3.3 pH 值對潔霉素廢水水解酸化的影響
3.3.1 pH 值對潔霉素廢水水解酸化的效果及分析
3.3.2 水解酸化接后續生化試驗效果及分析
3.4 容積負荷對潔霉素廢水水解酸化的影響
3.5 水力停留時間對潔霉素廢水水解酸化的影響
3.6 本章小結
4 零價鐵和生物填料強化潔霉素廢水水解酸化的研究
4.1 試驗材料與方法
4.1.1 廢水來源及水質
4.1.2 試驗裝置
4.1.3 分析項目、方法及儀器設備
4.1.4 試驗方法
4.2 零價鐵強化潔霉素廢水水解酸化的效果及分析
4.2.1 COD 的變化
4.2.2 pH 值的變化
4.2.3 VFA 的變化
4.2.4 ORP 的變化
4.2.5 出水 B/C 的變化
4.3 生物填料強化潔霉素廢水水解酸化的效果及分析
4.3.1 COD 的變化
4.3.2 pH 值的變化
4.3.3 VFA 的變化
4.3.4 ORP 的變化
4.3.5 出水 B/C 的變化
4.4 水解酸化接后續生化試驗效果及分析
4.5 本章小結
5 結論與建議
5.1 結論
5.2 創新點
5.3 建議
參考文獻
致謝