摘要
ABSTRACT
1 前言
1.1 選題依據
1.2 選題意義
1.2.1 理論意義
1.2.2 現實意義
1.3 文獻綜述
1.3.1 運動決策的概念及其相關理論
1.3.2 運動決策的研究現狀
1.4 研究任務
2 研究對象和研究方法
2.1 研究對象
2.2 研究方法
2.2.1 文獻資料法
2.2.2 實驗法
2.3 數據的記錄與分析
3 研究結果
3.1 行為學數據結果
3.1.1 反應時
3.1.2 正確率
3.2 不同水平籃球運動員在判斷任務上的眼動特征差異
3.2.1 注視點數目
3.2.2 平均注視時間
3.2.3 興趣區內注視點數目
3.2.4 興趣區內注視時間
3.3 事件相關電位數據結果
3.3.1 專家與新手在 N1 成分的總平均波形比較
3.3.2 專家與新手在圖片呈現 150ms 下 N1 成分的峰值比較
3.3.3 專家與新手在圖片呈現 150ms 下 N1 成分的潛伏期比較
3.3.4 專家與新手在圖片呈現 600ms 下 N1 成分的峰值比較
3.3.5 專家與新手在圖片呈現 600ms 下 N1 成分的潛伏期比較
4 討論
4.1 行為學數據分析與討論
4.2 眼動數據分析與討論
4.3 事件相關電位數據分析與討論
4.4 本研究存在的不足
5 結論
參考文獻
致謝
摘要
運動情境中的決策研究一直是運動認知領域的焦點問題,對于那些開放性的、同場對抗類的集體競技項目來說,運動決策的水平直接影響著運動員運動能力和技戰術水平的發揮。本研究試圖通過對被試在籃球比賽場景搜索任務中眼動及腦電的測試與分析,探索籃球專項運動員信息加工方式特點及其神經機制。
本研究隨機選取我?;@球隊的 20 名二級運動員,平均年齡 20 歲,和 22 名運動訓練專業學生,平均年齡 21 歲。采用改良的 oddball 范式:在屏幕中央呈現十字,而后快速呈現籃球比賽場景的圖片,要求被試準確且快速地判斷圖片上是否有籃球,按鍵反應。圖片包括原始圖片(標準刺激)160 張和修改圖片(偏差刺激,PS 圖片)40 張隨機呈現,圖片呈現時間為 150ms 和 600ms 兩種。實驗程序通過 E-prime2.0 編制,記錄反應時和正確率作為行為學指標。眼動數據通過 iView X 軟件進行采集,對注視次數,平均注視時間,興趣區內注視點和注視時間眼動指標進行分析。使用NeuroScan Nuamps40 導系統采集腦電信號,用 Curry 軟件對 ERPs 的相關成分的峰值和峰值潛伏期進行離線分析。
研究結果的行為學數據顯示,專家較新手在標準刺激下的反應速度和準確性表現出一定的優勢,但并達到顯著水平。專家組在 PS 圖上的正確率顯著性低于新手組,說明非籃球專項運動員在信息加工時更依賴具體信息。眼動數據顯示,圖片呈現600ms 時,在 PS 圖片上,新手組觀察圖片的注視點數目和平均注視時間顯著性多于專家組,而在興趣區內的注視點和注視時間不存在組別差異,說明籃球專項運動員具有更高效的視覺搜索策略,依賴整體線索自上而下加工。事件相關電位數據顯示,呈現時間 150ms 時,專家組對 PS 圖在枕區誘發的 N1 成分的潛伏期顯著早于新手組;呈現 600ms 時,專家組在枕區誘發的 N1 成分的潛伏期顯著性早于新手組,表明籃球專項運動員有更加快速的視覺搜索和信息加工的能力。
結論:非籃球專項運動員更依賴觀察到的具體信息從而進行決策。而籃球專項運動員在對情景任務進行信息加工和決策時更依賴整體線索,相比非籃球專項運動員,更不易受與真實情境有沖突的信息的影響,具有更加快速的視覺搜索和信息加工的能力。
關鍵詞:籃球運動員,信息加工,視覺搜索,N1
ABSTRACT
Decision-making in sports context has always been the focus in the field of sportscongition. For those open-ended, cometiing against class collective sports,decision-makiing level directly affects the players' athletic ability and the technical andtactical level of pslay. Through the game of basketball scenne search task, this studyattempts to explore information processing characteristics and the underlying neuralmechanisms of basketball players.
In this study, I randomly selected 20 second grade sportsman from school basketballteam, aveage aged 20 years old, and 22 students majoring in sport training, with an averageage of 21 years old. A modified oddball paradigm is used: A cross appears in the middle ofthe screen, then according to flashing basketball game scene pictures, participants arerequired to judge accurately and quickly whether there is a basketball in the picture andpress the corresponding buttoon. Pictures are divided into the 160 orginal pictures (stanardstimulus) and 40 modified pictures (deviant stimulus),randomly presented. And thepictures are presented for 150ms and then 600ms. Experimental program is edited byE-prime 2.0. The response time and accuracy are recorded as behavioral indicators. Weanalyse eye-movement data, collected through iView X software, which involve fixationnumber, average fixation duration, AOI fixation and AOI fixation duration. EEG is acquredby NeuroScan Nuamps40 system. And related ERPs components'peak and peak latencyare analysed by Curry for offline.
Results of behavioral data show that experts to novices demonstrate some advantageson response time and accuracy in the stanard stimulus, but not significantly. The accuracyof expert group on PS is significantly lower than the novice group, which indicates thatlow level basketball player depending on the specific information in informationprocessing. Eye-movement data shows that when the pictures display for 600ms, of the PSpictures, the number of fixation and average fixation duration of the novice gruoupssignificantly more than expert groups, however, there is no group difference in the numberof fixation and fixation duration in AOI. That indicates high level basketball players arewith a more efficient visual search strategies and top-down processing. Event-relatedpotentials data show that in 150ms presentation time, the N1 occipital-induced latency onPS images of expert group significantly earlier than the novice group; for 600ms, N1latency evoked in the occipital area of the expert groups significantly earlier than thenovice groups, which demonstrates that high level basketball players are with faster visualsearch and information processing capabilities.
Conclusions: high level basketball players more depend on global clue than low levelbasketball player in information processing and decision-making tasks and they are lesssusceptible to conflicting information with the real-life situation. However, low levelbasketball athletes rely more on observation of specific information for decision-making.
Therefore, high level basketball players have more rapid visual searching and informationprocessing capabilities.
Key words: basketball athlete, information processing, visual search, N1